The Quark-Mass Dependence of T_C in QCD: Working up from $m_q = 0$ or down from $m_q = \infty$?

(arXiv:hep-ph/0311119)

Adrian Dumitru, Dirk Röder, Jörg Ruppert @ Johann Wolfgang Goethe-University, Frankfurt

Motivation

- ullet Schematic phase diagram in the temperature vs. quark mass plane. C is the chiral critical point, D the deconfining critical point.
- Part 1: compute T_c in the O(4)-model and compare with lattice data.
- Part 2: compute T_c and find D in the Polyakov loop model and compare the results with lattice data.

Gavin, Gocksch and Pisarski, Phys. Rev. D 49, (1994).

Motivation: the O(4) linear sigma model

• The Lagrangian of the O(4) model

$$\mathcal{L}(\bar{\phi}) = \frac{1}{2} \left(\partial_{\mu} \underline{\phi} \cdot \partial^{\mu} \underline{\phi} - m^{2} \underline{\phi} \cdot \underline{\phi} \right) - \frac{\lambda}{4} \left(\underline{\phi} \cdot \underline{\phi} \right)^{2} + \underline{H} \phi_{1}$$

- For H = 0 and $m^2 < 0$ the symmetry is spontaneously broken to O(3), with 3 Goldstone bosons $(\pi^+, \pi^-, \text{ and } \pi^0)$
- For $H \neq 0$ and $m^2 < 0$ the symmetry is also explicitly broken, to give a mass to the 3 Goldstone bosons

mexican hat potential

$$(m^2 < 0, H = 0)$$

"tilted" mexican hat potential

$$(m^2 < 0, H \neq 0)$$

3–Goldstone bosons

3-Pseudogoldstone bosons

The effective potential of the O(4)-model

- $O(4) \simeq SU(2)_r \times SU(2)_\ell$
- We use the imaginary time formalism to introduce the temperature dependency.

$$\int_k f(k) \equiv T \sum_{n=-\infty}^{\infty} \int \frac{d^3k}{(2\pi)^2} f(2\pi i m T, k)$$

 $\bullet \ \phi \equiv (\sigma, \vec{\pi})$

$$V(\phi, \mathcal{S}, \mathcal{P}) = \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4 - H\phi$$

$$+ \frac{1}{2} \int_k \left[\ln \mathcal{S}^{-1}(k) + S^{-1}(k; \phi) \mathcal{S}(k) - 1 \right]$$

$$+ \frac{3}{2} \int_k \left[\ln \mathcal{P}^{-1}(k) + P^{-1}(k; \phi) \mathcal{P}(k) - 1 \right]$$

$$+ V_2[\phi, \mathcal{S}, \mathcal{P}]$$

 \bullet V_2 is the sum of the two-particle irreducible diagramms

Luttinger and Ward, Phys. Rev. 118, (1960),

Cornwall, Jackiw and Tomboulis, Phys. Rev. D 10, (1974).

The Hartree approximation

•
$$\frac{\delta V[\phi, \mathcal{S}, \mathcal{P}]}{\delta \mathcal{P}} = 0 \Rightarrow \mathcal{P}^{-1}(k) = P^{-1}(k, \phi) + \Pi[\mathcal{S}, \mathcal{P}]$$

•
$$\frac{\delta V[\phi, \mathcal{S}, \mathcal{P}]}{\delta \mathcal{S}} = 0 \Rightarrow \mathcal{S}^{-1}(k) = S^{-1}(k, \phi) + \Sigma[\mathcal{S}, \mathcal{P}]$$

$$\Sigma =$$

•
$$\frac{\delta V[\phi, \mathcal{S}, \mathcal{P}]}{\delta \phi} = 0 \Rightarrow H = m^2 \phi + \lambda \phi^3 + 3\lambda \int_q [\mathcal{S}(q) + \mathcal{P}(q)]$$

The parameters of the O(4)-model

• The parameters:

$$H = \frac{m_{\pi}^2 f_{\pi}}{2f_{\pi}^2}, \quad \lambda = \frac{m_{\sigma}^2 - m_{\pi}^2}{2f_{\pi}^2}, \quad m^2 = -\frac{m_{\sigma}^2 - 3m_{\pi}^2}{2} - 6\lambda Q_{\mu}(m_{\pi})$$
 with $Q_{\mu}(M) \equiv \frac{1}{(4\pi)^2} \left[M^2 \ln \frac{M^2}{\mu^2} - M^2 + \mu^2 \right]$

- m_{π} : tree-level mass of the pions
- f_{π} : tree-level decay constant of the pions
- m_{σ} : tree-level mass of the sigma
- The dependenc on the quark mass m_q :

$$m_{\pi}^{2}(m_{q}) = c_{1} m_{q}$$
 $f_{\pi}(m_{\pi}) = c_{2} + c_{3} m_{\pi}^{2}$
 $m_{\sigma}(m_{\pi}) = c_{4} + c_{5} m_{\pi}^{2}$

- $m_{\pi}(m_q), f_{\pi}(m_{\pi})$; $0.4 \, \text{GeV} \leq m_{\pi} \leq 1 \, \text{GeV}$: Chiu and Hsieh, Nucl. Phys. B **673**, (2003).
- $m_{\sigma}(\mathbf{m}_{\pi})$:

Kunihiro, Muroya, Nakamura, Nonaka, Sekiguchi and Wada [SCALAR Collaboration], arXiv:hep-ph/0310312.

The scalar condensate

• The increasing of the pion mass leads to a broadening of the "phase transition".

The cross over temperature T_c as a function of m_{π}

- $\mathbf{H}(m_{\pi} = 1 \, \text{GeV}) \approx 10 * \mathbf{H}(m_{\pi} = 0.4 \, \text{GeV})$
- The scale is given by the zero-temperature string tension $\sqrt{\sigma} \simeq 425$ MeV.

Karsch, Laermann and Peikert, Nucl. Phys. B 605, (2001).

The Polyakov loop

- In the Limit $m_q \to \infty$ the quarks decouple and drop out of the theory (pure gauge theory).
- The order parameter for such theory is the expectation value of the Polyakov loop

$$\ell = rac{1}{N_c} {
m tr} \; {\cal P} \exp \left(i g \int_0^{1/T} A_0(ec{x}, au) \; d au
ight) \; .$$

- N_c is the number of colors.
- g is the gauge coupling.
- A_0 is the temporal component of the gauge field.

$$\langle \ell \rangle = 0 , T < T_c ; \langle \ell \rangle > 0 , T > T_c$$

Pisarski, Phys. Rev., D**62**, (2000);

Scavenius, Dumitru, and Jackson, Phys. Rev. Lett. 87, (2001).

The effective potential for the Polyakov loop model

• The effective potential for 3 colors and finite m_{π}

$$V(\ell) = -\frac{b_1}{2} \frac{\ell + \ell^*}{2} - \frac{b_2}{2} |\ell|^2 - \frac{b_3}{3} \frac{\ell^3 + \ell^{*3}}{2} + \frac{1}{4} (|\ell|^2)^2$$

- $b_1 \sim \exp(-m_{\pi})$ breaks the Z(3)-symmetry explicitly, in this work b_1 is obtained by fitting the T_c to the lattice data.
- $b_2(T)$ is the mass term and the only temperature dependend parameter in this model.
- $b_3 \approx 0.9$ is obtained by fitting the effective potential to the pressure and energy density of the pure gauge theory with three colors.

Dumitru and Pisarski, Phys. Lett. **B504**, (2001); Scavenius, Dumitru and Lenaghan, Phys. Rev. C **66**, (2002)

The parameter b_1 as a function of m_{π}

- $b_1(m_{\pi} = 1 \, \text{GeV}) \approx 2 * b_1(m_{\pi} = 0.4 \, \text{GeV})$
- The endpoint of the line of the first-order transition:

$$b_1^c = 0.026 \ (m_\pi \approx 1.7 \, {\rm GeV})$$

• Naive extrapolation of b_1 to the chiral limit $m_\pi \to 0$: $b_1^{cl} \approx 0.2$

The expectation value of the Polyakov loop

- $b_1 = 0 \ (m_{\pi} = \infty)$: first order phase transition
- $b_1 \ge 0.026 \ (m_{\pi} \ge 1.7 \ {\rm GeV})$: cross over transition

Conclusion

• The O(4)-model lead to a stronger dependenc of T_c on m_{π} than seen in the lattice data. The reason is that the **chiral-symmetry is strongly broken**.

• We found the point where the line of first-order deconfinement phase transition ends at $m_{\pi} \approx 1.7$ GeV and $T \approx 240$ MeV.

• Going to smaller values of m_{π} (down to $m_{\pi} \approx 425$ MeV) the lattice data are well described by a small explicit breaking of the Z(3) symmetry.